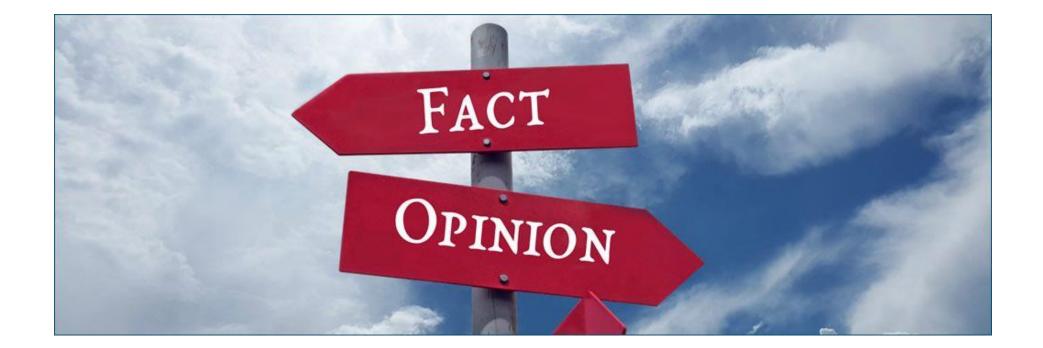
Time is of the Essence: Rethinking Duration and Dosing of Antibiotics


Ishminder Kaur, MD

Assistant Professor of Pediatrics, Division of Pediatric Infectious Diseases

Medical Director, Antimicrobial Stewardship Program

UCLA Mattel Children's Hospital

I have no conflicts of interests to disclose

Review	the original literature on antibiotic treatment duration
Discuss	recent evidence comparing short versus longer courses of antibiotics
Examine	literature supporting earlier parenteral to enteral antibiotic conversion
Address	dose-optimization strategies for time- dependent antibiotics

THE TREATMENT OF LOBAR PNEUMONIA AND PNEUMOCOCCAL EMPYEMA WITH PENICILLIN*

WILLIAM S. TILLETT, MARGARET J. CAMBIER, AND JAMES E. MCCORMACK

The Department of Medicine of New York University College of Medicine and the Third Medical Division of Bellevue Hospital

The Bulletin, NY Acad Med 1944

Pneumococcal pneumonia N=46

Etiology confirmed, 43 cases

Dose and duration were arbitrarily altered to observe the response to limited treatment

ŢţŢ

39 had rapid recovery (1-4 days)3 died (without initial response)4 indefinite response

History of Antibiotic

In all of the patients without complications an initial definite response was noted within 16 to 20 hours of beginning treatment

WBC, unaffected by penicillin and returned to normal w/in 4-6 days post Rx interruption

2

It is also evident that relapse was liable to occur if treatment was not extended longer than two days D 1 (7) D 2 (7)

Treatment interruption

Duration

Relapse

4

History of Antibiotic Duration Community Acquired Pneumonia (CAP)

1943, Keefer et al. 500 patients

"...many patients recovered on therapy for 2-3 days"

1944, Dawson et al. 100 patients

"In general, the results were satisfactory after treatment for 1.5-2 days"

1945, Meads and Finland, 54 patients

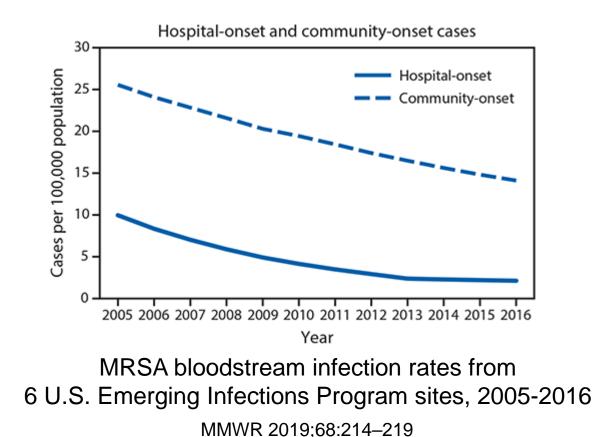
"until there was definite clinical improvement and the temperature had remained below 100°F for 12 hours...then given for another 2-3 days."

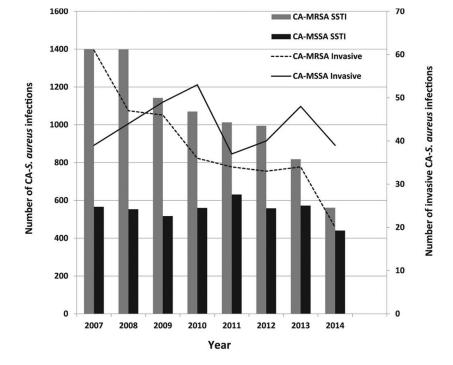
Clinical Trials, Duration (Short = Long)

Diseases for which short course antibiotic therapy has been found to be equally effective to longer traditional courses of therapy

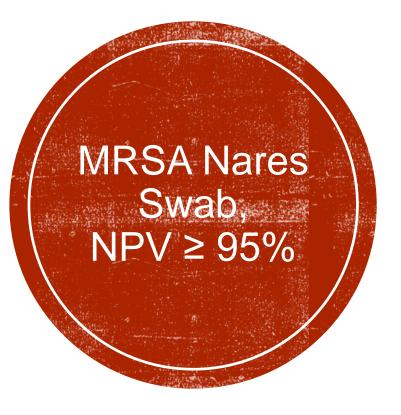
Diagnosis	# RCTs	Short (d)	Long (d)
Community acquired pneumonia, CAP	11	3 or 5	7, 8, or 10
Hospital acquired/ ventilator associated pneumonia	2	8	15
Complicated urinary tract infections/ pyelonephritis	7	5 or 7	10 or 14
Complicated/ post-operative intra-abdominal infections	2	4 or 8	10 or 15
Gram negative rod bacteremia	2	7	14
Empiric neutropenic fever	1	Afebrile and stable × 72 h	Afebrile and stable × 72 h and ANC > 500 cells/µL

Adapted from Brad Spellberg, MD- shorter-is-better


Clinical Trials, Duration (Short = Long)


Diseases for which short course antibiotic therapy has been found to be equally effective to longer traditional courses of therapy

Diagnosis	# RCTs	Short (d)	Long (d)
Latent TB infection	8	1-4 months	6-12 months
Acute bacterial sinusitis	6	5	10
Acute bacterial skin and skin structure Infections	4	5-6	10-12
Vertebral Osteomyelitis	1	42	84
Septic arthritis	2	10-14	28-30


Adapted from Brad Spellberg, MD- shorter-is-better

Current state of Methicillin-resistant Staphylococcus aureus in the U.S.

Community acquired *S. aureus* infections at Texas Children's Hospital, 2007–2014 MMWR 2019;68:214–219

MRSA nares swab negative predictive value, NPV

- Retrospective cohort, VA medical centers *Clin Infect Dis* 2020
 - 96.5% (96.5% for BSI, 98.6% for respiratory infections, 93.1% for wound cultures)
- Adult AML pts, suspected infection Infect Control Hosp Epidemiol 2020
 - 99%

Vancomycin De-escalation

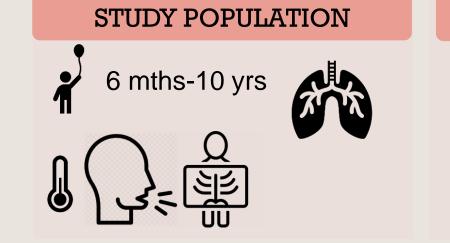
Minimizing Empiric Vancomycin

 Compare outcomes of CONS sepsis between vancomycin plus gentamicin versus oxacillin plus gentamicin empiric therapy

TABLE 1.	Frequencies of Fulminant Late-Onset Sepsis for the
Most Commo	n Pathogens in the NICU, 1988–1997

Organism	Case Ratio	Frequency (%)
Pseudomonas sp.	20/36	56
Escherichia coli	5/27	19
Enterobacter sp.	4/28	14
Klebsiella sp.	4/31	13
Staphylococcus aureus	4/67	6
Enterococcus sp.	3/83	4
<i>Candida</i> sp.	4/143	3
Coagulase-negative staphylococci	4/277	1

TABLE 2.Coagulase-Negative Staphylococcal Sepsis in theNICU from 1988–1997


Date of sepsis	1/88-9/94	10/94–12/97
Empiric antibiotics	Vancomycin	Oxacillin
-	and	and
	cefotaxime	gentamicin
Cases of fulminant sepsis	2	2
Total sepsis cases	141	136
Frequency of fulminant	1	1
sepsis (%)		
Median duration of sepsis	2 days (1–13)	2 days (1–11)
(range)	-	-

Pediatric Clinical Trials, CAP

Community Acquired Pneumonia RCTs	Year of Publication, Journal	Country and Setting	Comparison	Results
Clinically diagnosed pneumonia (2-59 months)	2002, Lancet	7 clinics, Pakistan	Amoxicillin, 3 vs 5 days	Equal treatment failure rates
Clinically diagnosed pneumonia (2-59 months)	2004, British Medical Journal	7 clinics, India	Amoxicillin, 3 vs 5 days	Equal clinical cure and treatment failure
Radiologically confirmed pneumonia (6-59 months)	2014, Pediatric Infectious Diseases Journal	ED, Israel	HD-amoxicillin, 3 vs 5 days 5 vs 10 days	3 inferior, 5 and 10 no treatment failure
Chest-indrawing pneumonia in resource-limited setting (2-59 months)	2020, NEJM	2 clinics, Malawi	HD-amoxicillin 3 vs 5 days	Treatment failure non-inferior
Radiologically confirmed pneumonia (6 months-10 years)	2021, JAMA Pediatrics	2 EDs, Canada	HD-amoxicillin 5 vs 10 days	Equal clinical cure
SCOUT-CAP (6-71 months)	ongoing	Clinics and ED, U.S.	Beta-lactam abx, 5 vs 10 days	ongoing

CAP in Children in Outpatient Setting

2-center, ED-based, noninferiority randomized clinical trial

INTERVENTION, OUTCOME

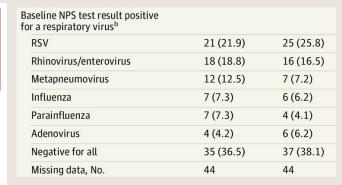
5 vs 10 days HD amox Clinical cure at 14 to 21 days

3-5 d, 7-10d

noninferiority margin, 7.5%

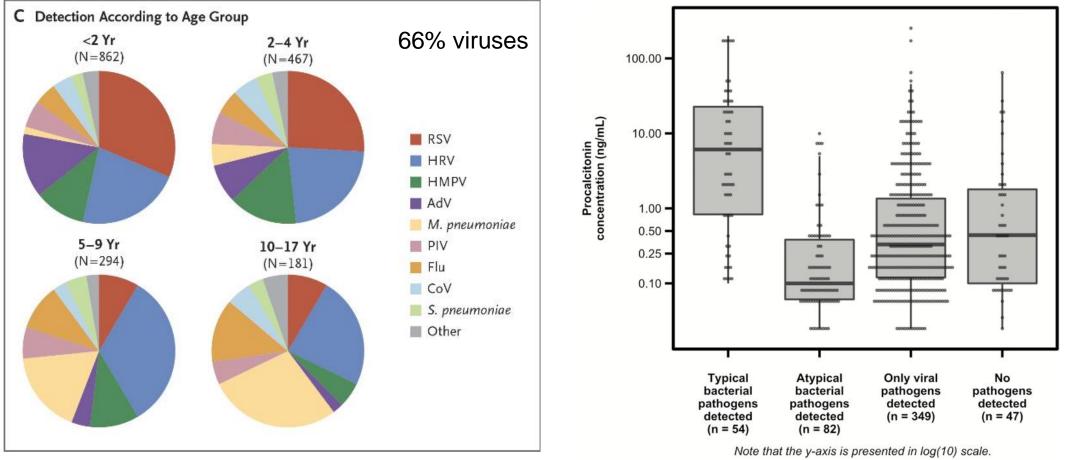
RESULTS

N = 281


Median age was 2.6 (IQR, 1.6-4.9

65% had virus detection at baseline

Clinical cure at 14 to 21 days


84.1%

Pernica M, et al. JAMA Pediatrics March 2021

CAP, Hospitalized Children

EPIC study group, NEJM 2015

EPIC study group, JPIDS 2017

Duration per Guidelines, CAP

Guideline	Year	Duration
CAP, WHO	2009	3-5 days
CAP, Pediatric	2011	10 days, although shorter may be just as effective
Adults With Hospital-acquired and Ventilator-associated Pneumonia	2016	7 days
CAP, Adults	2019	5 days Use clinical stability; most achieve in 1 st 48-72 hours, still minimum 5 days

Missing: empyema, lung abscess, necrotizing pneumonia

Duration in Practice

Condition	Guideline recommended duration	Median course duration in days
Pharyngitis	10 days (A,P)	10
Sinusitis	5-7 days (A), 10-14 days (P)	10
Acute otitis media	10 days (shorter courses for select children)	10
Community-acquired pneumonia	5 days (A, 2019) 10 days, shorter may be eff (P, 2011)	10
Cellulitis	5 days (A,P)	10
Abscess	5 days (A,P)	10
Acute cystitis	1- 7 days (F, 12-64 yrs)	7

King LM, et al. Clin Infect Dis 2020

What Went Wrong?

1945, Meads and Finland, 54 patients w pneumococcal pneumonia

"until there was definite clinical improvement and the temperature had remained below 100°F for 12 hours...then given for another 2-3 days."

44/54 survived; 2/44 relapsed; 1 similar (24hr Rx), 1 different serotype

Despite this remarkable success, these relapses weighed heavily on the authors, leading them to suggest:

"The need for continuing treatment even after the fever and symptoms subside is suggested by the relapses that have occurred in this series."

What Went Wrong?

Louis B. Rice and Brad Spellberg

"It is unclear how this confused desire to prevent reinfections subsequently transformed into the illogical dogma that antibiotic resistance could be prevented by continuing therapy beyond resolution of symptoms"

Center for Disease Control's "Get Smart" Web site

When you get a prescription for antibiotics, follow your doctor's instructions carefully. RCT, 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia JAMA 2003 MDR pathogens emerged more frequently in those who received 15 vs 8 days, 62% vs 42% of pulmonary recurrences, p = .04

Short-course empiric antibiotic therapy for patients with pulmonary infiltrates in the intensive care unit. Am J Respir Crit Care Med 2000 Antimicrobial resistance developed in 35% in standard therapy vs 15% of the patients in the shorter duration, p = 0.017

Antibiotic Discovery

YEAR ANTIBIOTIC APPROVED OR RELEASED

1941	1958	1959	1960	1980	1980	1985	1987	1990	2001	2003	2015
Peniciillin	Vancomycin	Amphotericin B	Methicillin	Cefotaxime	Azithromycin	Imipenem	Ciprofloxacin	Fluconazole	Caspofungin	Daptomycin	Ceftazidime- avibactam
1942	1998	2016	1960	1983	2011	1996	2007	1988	2004	2004	2015

YEAR RESISTANCE IDENTIFIED

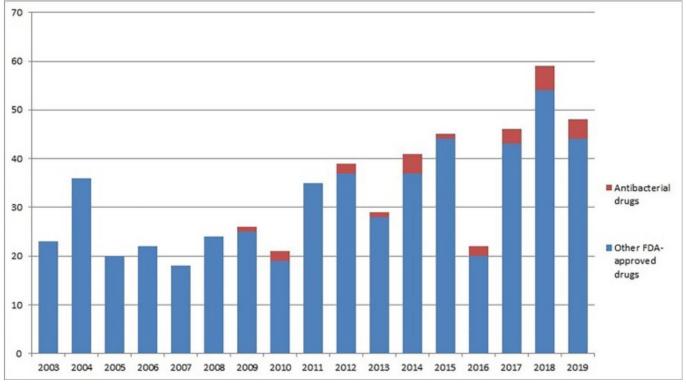

Adapted from CDC data

Table 1. Microbes versus humans.

Variable	Microbes	Humans	Factor
No. on earth	5×10 ³¹	6×10^{9}	~10 ²²
Mass, metric tons	5×10^{16}	3×10^{8}	~108
Generation time	30 min	30 years	$\sim 5 \times 10^{5}$
Time on earth, years	3.5×10^{9}	4×10^{6}	~10 ³

Spellberg B, et al. Clin Infect Dis 2008

Antibiotic Discovery Pipeline

Andrei S, et al. Discoveries 2019

Drug Shortages

Home > Drug Databases > Drug Shortages

FDA Drug Shortages

f share ♥ TWEET in LINKEDIN ♥ PIN IT ■ EMAIL ♣ PRINT

Current and Resolved Drug Shortages and Discontinuations Reported to FDA

Azithromycin Tablets	Resolved
Cefazolin Injection	Currently in Shortage
Cefepime Injection	Resolved
Cefotaxime Sodium Injection	Currently in Shortage
Cefotetan Disodium Injection	Currently in Shortage
Cefoxitin for Injection, USP	Currently in Shortage
Ceftazidime and Avibactam (AVYCAZ®) for Injection, 2 grams/0.5 grams	Currently in Shortage
Ceftolozane and Tazobactam (Zerbaxa) Injection	Currently in Shortage

The New Antibiotic Mantra-"Shorter Is Better"

Brad Spellberg, MD

"In AD 321, Roman Emperor Constantine the Great codified that there would be 7 days in a week.

Even in the modern era of evidence-based-medicine, this remains a primary reference for duration of antibiotic therapy: it leads physicians to treat infections in intervals of 7 days"

"Had Constantine chosen a 4-day week, providers would likely routinely prescribe 4-8 day courses of therapy"

Short Course Antibiotic Therapy- Replacing Constantine Units with "Shorter is Better" Noah Wald-Dickler, MD and Brad Spellberg, MD

> JAMA Internal MedicineB2016 Clin Infect Dis 2019

"coordinated interventions designed to improve and measure the appropriate use of [antibiotic] agents by promoting the selection of the optimal [antibiotic] drug regimen including **dosing**, **duration of therapy, and route** of administration"

Clin Infect Dis 2016

RETHINKING ROUTE

			Oral/IV ^a Ciprofloxacin	Cost ^b ¢/\$
Rethinking Route			Levofloxacin	¢/\$
			Metronidazole	¢/¢
 Early transition of IV to PO 			TMP-SMX	¢/ \$\$\$
 Start with PO 	Drug	Oral bioavailability	Doxycycline	¢/ \$\$
	Clindamycin	90%	Linezolid	\$/ \$\$
	Linezolid	100%	Azithromycin ^c	¢/\$
	Ciprofloxacin	80%	UC	LAASP
	Levofloxacin	100%		
	TMP-SMX	95%		
	Doxycycline	>90%		
	Rifampin	90%		
	Fluconazole	95%		
	Voriconazole	95%		
	Isavuconazonium sulfate	95%		

Source: idstewardship.com

Step-down to Bactrim PO

Indication requires highdose IV Bactrim

Credit @idstewardship

Early Conversion IV to PO, Randomized Controlled Trails

Bone/Joint Infections

Bone or joint infection	
N=1054	

: Min 7 days from start or sx

	a sist	
Rx failure	14.6%	13.2%
Catheter complication	9.4%	1.2%

OVIVA trial, U.K.NEJM 2019

Endocarditis

L-sided endocarditis N=400 Strep, E. faecalis, S. aureus, CoNS

Min 10 days

Primary composite 12.1% 9% outcome *composite of all-cause mortality, unplanned cardiac surgery, embolic events, relapse of bacteremia with the primary pathogen- x 6months

POET Trial, Denmark, NEJM 2019

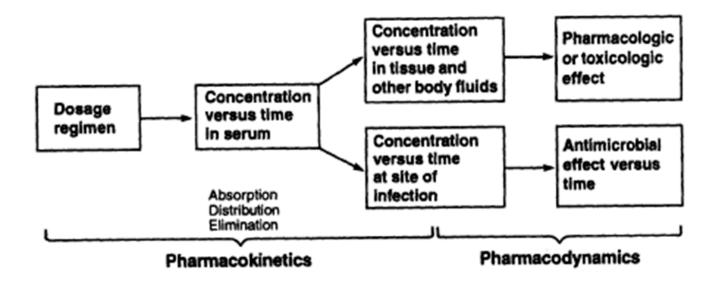
Ped Septic Arthritis

Cx + septic arthritis 3 mnths-15 yrs N=130, 10 vs 30 days

, : 2-4 days

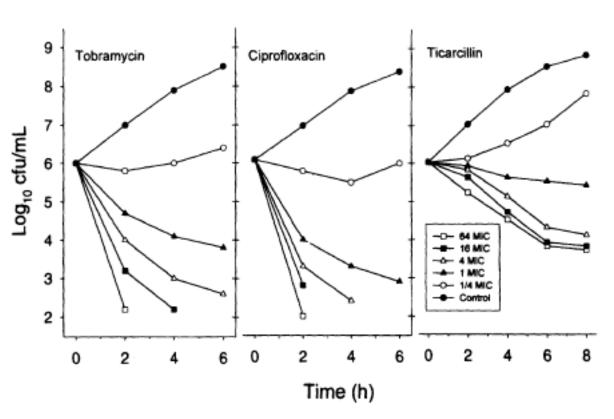
	30d	10d
Relapse	0	0
Late-onset reinfection	2	0

Clin Infect Dis 2009


Early switch to oral antibiotics has similar outcomes with less catheter-related adverse events

Early IV to PO, Bacteremia

- Several retrospective studies in adults (gram negative and S. aureus)
- Pediatrics- we win, right?
 - 1. Young infants with bacteremic urinary tract infections (transient)
 - Multicenter retrospective cohort study; ≤60 days old; 11 children's hospitals; 2011-16¹
 - N=115; 50% ≤7d of IV antibiotics (2-24d); no difference in recurrent UTIs or hospital reutilization (2v4)
 - 2. S. aureus bacteremia (SAB) in the setting of musculoskeletal infection (transient)
 - Clinical Management of SAB in Neonates, Children, and Adolescents²
 - Children with SAB and acute osteoarticular infection: may switch to oral therapy after a minimum of 3 days of IV therapy



Pharmacokinetics and Pharmacodynamics (PK/PD)

Craig WA. Clin Infect Dis. 1998

PK/PD Profiles of Antibiotics

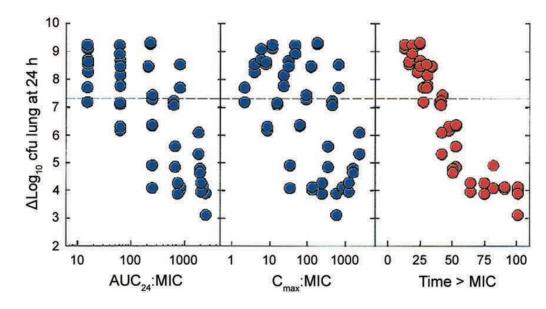
P. aeruginosa

Concentration-dependent Killing

 \uparrow concentration = \uparrow bactericidal (rate + extent)

aminoglycosides + fluoroquinolones

Shah et al. 1976; Vogelman and Craig 1986


PK/PD Profiles of Antibiotics

Time-dependent Killing

Minimal concentration dependent killing Saturation of killing rate at low multiples of MIC (4-5x)

Extent of killing largely dependent on time of exposure

β-lactams

Cefotaxime vs K. pneumoniae mouse model

Shah et al. 1976; Vogelman and Craig 1986

PK/PD Indices of Antibiotics

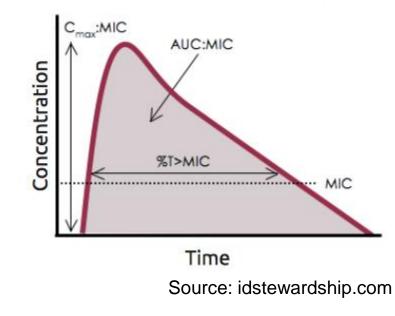
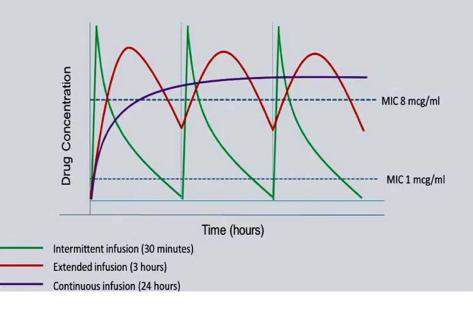



Figure 2. The PK-PD indices associated with antibacterial activity

Time>MIC and Extended Infusions

	Antimicrobi Class	ial Bactericidal Target (fT>MIC)
	Carbapenen	ms ≥ 40%
	Penicillins	≥ 50%
	Cephalspori	ins ≥ 60-70%
Time > MIC N	IIC	1 and a second

Prolonged-Infusion Carbapenems

Clinical outcomes

- Prolonged versus short-term IV infusion of antipseudomonal β-lactams for patients with sepsis: a systematic review and meta-analysis of randomized trials. Lancet 2018
 - lower all-cause mortality (risk ratio 0.70, 95% CI 0.56-0.87)

Pharmacologic target optimization

• Probability of target attainment higher

Ease of administration outpatient

UCLA Change of Practice: β-lactams Extended Infusions

NEW! Extended Infusion Antibiotics: Meropenem, Cefepime, & Piperacillin-Tazobactam 4.5g

- Meropenem, cefepime, and piperacillin-tazobactam 4.5g will be orderable in CareConnect as an order panel with the first dose (bolus) being given over 30 min. and subsequent doses infused over 4 hours
- Dosing recommendations will be available through the CareConnect ordering sidebars, as well as in the UCLA Spectrum Mobile App
- Go-live dates for CareConnect provider order entries to become available:
 4/19/2021: Meropenem 5/3/2021: Cefepime, Piperacillin-tazobactam 4.5g
- Rationale: Extended infusion is the <u>preferred</u> method for this antibiotic class. Studies have shown
 extended infusion beta-lactams improves patient outcomes such as lower mortality rates and shorter
 length of hospital stay.
- If extended-infusion is not feasible for your patient (i.e. line access, incompatibilities, etc.), contact pharmacy for assistance.

UCLA Change of Practice: Vancomycin PK/PD Target

- Traditional practice: trough monitoring as surrogate of AUC:MIC
- New practice: target AUC:MIC for MRSA, ≥400:1
- When: Summer-fall, 2021
- Why: 2020 Vancomycin therapeutic monitoring guideline

Am J Health-Syst Pharm.2020

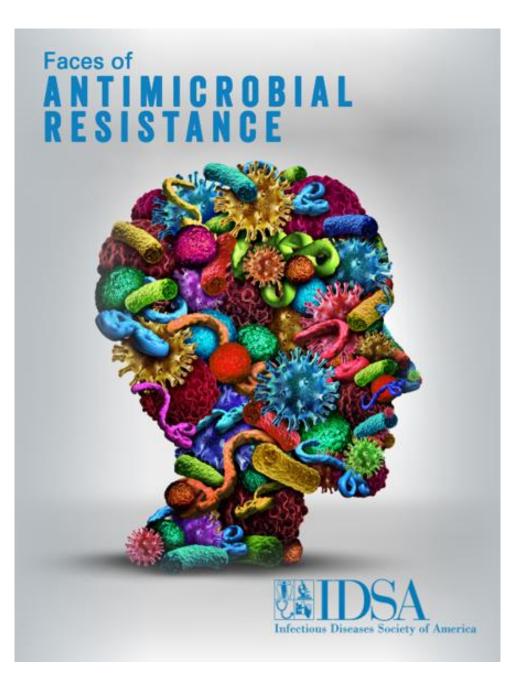
Vancomycin AUC monitoring, Data

- Accepted PK/PD index: AUC:MIC ratio of ≥400:1, range 400-600
- Using Bayesian software programs
- Clinical outcomes
 - Several retrospective, single-center studies, MRSA infections (BSI, pneumonia, endocarditis)
 - Prospective, multicenter, observational study of 265 hospitalized adults with MRSA BSI
- Acute kidney injury (AKI)
 - Lower with AUC-based monitoring
 - Median values a/w AKI: trough, 15.7 mg/L and AUC, 625 mg·h/L
 - Same study- lower frequent blood sampling, earlier target attainment, shorter length of stay

Vancomycin AUC monitoring, What to Expect

- AUC based monitoring will be implemented soon
- Continuous infusions
 - Earlier target attainment, less variability in serum concentrations, ease of drug level monitoring, lower risk of AKI
 - Higher steady state concentrations on continuous infusions
 - Not troughs, but steady state concentrations (Css)
 - Css 17-25 corresponding to AUC 400-600
 - Overall daily dose is lower in many cases

Time to Act is Now.



Plus: 223,900 cases and 12,800 deaths from Clostridioides difficile

2019 CDC Antimicrobial Resistance Threat Report

Stop referring to a coming post-antibiotic era—it's already here!

It is time to rethink the use of this limited resource

It is time to adopt the mantrashorter is better!